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Abstract

In order to select chromatographic starting conditions to be optimized during further method development of the separation of a given
mixture, so-called generic orthogonal chromatographic systems could be explored in parallel. In this paper the use of univariate and multivariate
regression trees (MRT) was studied to define the most orthogonal subset from a given set of chromatographic systems. Two data sets were
considered, which contain the retention data of 68 structurally diversive drugs on sets of 32 and 38 chromatographic systems, respectively. For
both the univariate and multivariate approaches no other data but the measured retention factors are needed to build the decision trees. Sinc
multivariate regression trees are used in an unsupervised way, they are called auto-associative multivariate regression trees (AAMRT). For
all decision trees used, a variable importance list of the predictor variables can be derived. It was concluded that based on these ranked lists,
both for univariate and multivariate regression trees, a selection of the most orthogonal systems from a given set of systems can be obtained
in a user-friendly and fast way.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction initial starting conditions for a given new mixture are retained
and they are further studied to improve the separation during
Reversed-phase high performance liquid chromatographyfurther method development. In this context it would be
(RPLC) s one of the most popular separation techniques useddeal to have a set of chromatographic systems with different
in the pharmaceutical industfy]. Nowadays a wide range of  selectivities. In order to obtain such an ideal subset of chro-
columns containing different stationary phases are availablematographic systems attempts are made to select the most or-
and can be combined with a range of mobile phases. Thisthogonal from larger sef5—9]. Orthogonal chromatographic
diversity opens the opportunity to use RPLC for almost any systems are defined as systems with a strongly different se-
pharmaceutical separatif®,3]. lectivity. This is caused by the fact that different mechanisms
However, it is often not easy to select an appropriate start- of retention are present in these systems or the retention
ing point, e.g. a first choice of stationary and mobile phase, is influenced by different charges of the given solutes
which is then optimized during further method development. [5,6].
Most of the time such a starting point is selected using  Moreover, such an approach may be useful to reveal the
trial-and-error method$3]. An interesting approach is a composition of an unknown mixture. One of the most com-
setup in which different chromatographic systems are testedmon mixtures to be separated in the pharmaceutical industry
in parallel[4]. From these exploring experiments, the best consists of a new drug and its impurities, which initially are
unknown in number and structure. Exploring the separation
* Corresponding author. Tel.: +32 2 477 47 34; fax: +32 2477 4735, On a set of parallel orthogonal systems can maximize the
E-mail address: yvanvdh@vub.ac.be (Y. Vander Heyden). probability that all substances will be revealed and indicate
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which system(s) are most appropriate for further method op- tering technique or weighted pair group method using arith-

timization. metic averages (WPGMA) method, OPTICS color maps and
The aim of this paper is to introduce and evaluate two PCA [5,20]. Another approach suggested by Forlay-Frick
new methodologies based on univaridgi®] and multi- et al.[19] is based on the generalized pairwise correlation

variate regression tre¢$1] for the selection of orthogonal method (GPCM]21] for which the authors evaluated differ-
chromatographic systems. Univariate regression trees wereent statistical selection criteria. In this paper we evaluate two
proposed by Breiman et al. in 19840] as one part of new methodologies for the selection of orthogonal chromato-
the non-parametric statistical method called classification graphic systems based on univariate and multivariate regres-
and regression trees (CART). The name indicates that thesion trees, and their use to sort the systems in color maps.
methodology can handle both categorical and numerical

variables as a univariate resporj46]. CART is frequently

used for modelling in different fields such as analytical 2, Theory

chemistry, medical diagnosis, clinical epidemiology and

ecology [12-15] since it can handle large sets of data 2.7. Univariate regression trees

(thanks to automatic feature selection), but probably more

important, since the resulting models are simple decision 2.7.7. Classification and regression trees

trees, which are very easy to interpret. Multivariate regres-  |n 1984, Breiman et aJ10] introduced a statistical method
sion trees (MRT) were introduced in 1992 by Segal to handle for classification and modelling, called “classification and re-
longitudinal datd16]. The methodology implemented inour  gression tree (CART) analysis”. In this approach, a binary
study, was proposed by De’Afi1] in the field of ecology.  partitioning procedure is applied in order to explain the vari-
Another recently published paper by Larsen and Speckmanation of a single dependent variable (the response variable
[17] proposes an analogue method for the analysis of or response) based on a set of independent variables (the
abundance data in ecology. In general, MRT's are proposedexplanatory variables or predictors). CART can handle both
for the simultaneous description of several responses by treecategorical and numerical variables as response and predic-
models, using a set of independent variables to extract andors. Since CART can handle only one response variable at
predict the clusters present in the multivariate responses.the time, it is a univariate method. In this paper the term
More recently, Questier et dlL8] proposed to use MRT in  “ynivariate regression trees” is used, in order to emphasize
an unsupervised way. Unsupervised means that no responsghe difference between this univariate method and the multi-
variables are available in the data set, which means that theyariate approach (see Sectidrd).
original variables are used not only as explanatory variables, CART splits the data into mutually exclusive subgroups,
but also as response variables. This approach was callectalled nodes, within which the objects have similar values
auto-associative multivariate regression trees (AAMRT) and for the response variable. The starting point is the root or
was proposed as a data mining cluster analysis mgt&ld  parent node, which contains all objects of the data set. Then
In order to study the selection of orthogonal systems, g repeated binary splitting procedure is used to split the data
several chromatographic systems with different stationary in two groups, called child nodes. The process is repeated
phases, buffer pH, temperature and organic modifiers werepy treating each child node as a parent node. Each split is
examined. Two data sets were studied. The first consists of adefined by a single explanatory variable and a cut point (for
set of eight silica-based systems, combined with four differ- numerical variables) or by relating one or more levels of the
ent pH levels in order to define a total of 32 chromatographic (categorical) variable to one of the nodes. For each node all
systems. The second consists of 38 chromatographic systemgossible splits are evaluated, testing all predictors and their
including 12 diverse columns at different mobile phase con- possible threshold values or levels, and finally, the best split
ditions. The selected subsets of orthogonal chromatographicis retained. The best split is defined as the variable (and as-
systems are compared to those obtained using other methodsociated splitting value) that minimizes the impurityof
ologies on the same data sp5,19] These selections were  the two child nodes. The goodness of a split is then defined

based on Pearson’s correlation coefficient color maps, inas the impurity decrease between the parent node and its
which the chromatographic systems were ranked accordingchildren:

to increasing dissimilarities in a weighted pair group method

using arithmetic averages (WPGMA)-dendrogram. Inthe lit-  Ai(s, tp) = ip(tp) — pLi(tL) — pRI(tR) (1)
erature, the orthogonal chromatographic systems usually are

selected based on the evaluation of the Pearson’s correlawheres is a candidate splify. andpgr are the fractions of

tion coefficientg7,8] or parameters derived from[@,19]. In observations of the parent nogighat go into the child nodes
order to enhance the interpretation of large correlation coeffi- 7. andrr, respectively. The best splitter is the one that maxi-
cients matrices for large sets of chromatographic systems, andnizesAi(s, tp).

to select the most orthogonal or the similar systems, several Different criteria to measure the impurity of a node have
visualization methods were investigated, such as dendro-been proposed for CARJ[ILO]. For regression trees, the total
grams from the hierarchical weighted-average-linkage clus- sum of squares of the response values about the mean of the
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node is the most popular measure of impufit9,22} In summary, for each node) (of a tree {) the impurity,
i(¢r), is computed as a measure of inhomogeneity. A given
i(r) = Z O — Y1) (2) split, which divides a parent node into two child nodes, is
Xn €1 evaluated based on the impurity decrea&é (t causes. A

variable ¢) is characterized with an impurity decrease sum
of observation;, belonging to nodeandy(r) the meanofall (M), caused by the best (surrogate) splits the variabje (

observations in node Absolute deviations about the node defines for all splits of a given tree. In the end a variable
medians is another criterion which is used to build (robust) ImPortance listis obtained after rescalifg between 0 and
trees[10]. 1, so that the most important variable obtains an importance

variable (mp,) equal to 1.

wherei(r) is the impurity of node; y, is the response value

A label or class is assigned to every node of the tree. For
regression trees, this is simply the mean within the node.

The splitting procedure is continued until a stopping cri- 2-1.2. Relative importance sum _ o

contain one or a user-defined number of objects. The treef€gression trees, a new parameter is needed. In other meth-
thus obtained is called the maximal tree and describes the0ds that combine several tree-based structures (e.g. boosting
training data as good as possifil®]. For this tree, overfit- ~ CART [23] and random forest4]), a variable importance

ting generally is observed, which will cause poor predictive Parameter is used, that is computed as a weighted sum of
abilities for new samplefl3—15] However, if one wants to the original CART[10] variable importance values for each
describe the given (training) data set as good as possible, thdree. Here, an analogue parameter, the so-called relative im-
maximal tree is the best choice. For prediction purposes, thePortance sum (RIS) is calculated in order to encode for the
optimal tree is selected from a set of subtrees derived from 9eneral importance of a given predictor variable in a collec-
the maximal tree by means of a so-called pruning procedure.tion of univariate regression trees. This set of trees consists of
This consists in cutting away the worst terminal branches of @ separate tree for each of the variables (considered once as
the maximal tree. Usually the optimal tree is then selected us- response), using the other variables as explanatory variables.

ing either cross-validation methods or based on an external Thus, the number of univariate regression trees included in
independent test sft0]. this set equals to the number of variables present in the data

Since in this study prediction for new objects was not a Set. Using each ofthe variables as the response of one tree, and
goal, the details on pruning and optimal model selection are the remaining variables as predictor variables to define that
not described. More information on these steps can be foundtrée, the importanceyp) of each variable is computed for all
in reference$10,22] these trees. The relative importance sum is then defined as:

The importance of the explanatory variables to introduce S impy.
asplitin the tree is detected in CART by the variable ranking RIS, = e
method as the impurity decrease suvJ caused by a pre- mﬁﬁzi:fmpvm v="1....1]
dictor variablev taking into account all nodes of a given tree:

with RIS, the relative importance sum of variablem the
M, = Z Ai5y, 1) number of univariate regression treesp, ; the importance
of variable v in the ith tree, andn the number of given

. o~ o . variables (heres = m).
with Ai(5,, t) the largest reduction in impurity caused by

a surrogate split defined by the variahlés,) for a node

t of the treeT. Thus, the use of each variable in surrogate

splits is evaluated for all nodes of the tree. Surrogate splits
are alternative splits of a given node, which may be used in
the case of missing values for the variable that defines the
original split of that node in the tree. The predictor with the

teT

2.2. Auto-associative multivariate regression trees

2.2.1. Multivariate regression trees
Whereas univariate regression trees handle only one
response, the so-called multivariate regression trees are
; . : . decision trees that describe several response variables simul-
largest impurity decrease sumM{) is the most important L -
. : : taneously. Note that no multivariate decision rules are used
and obtains an importance-valuep,) equal to 1. All other ; g
. i . for the binary splits in the MRT, but the response of a MRT
variables get a score on the importance scale by comparing, o . X
o ) . s multivariate. The construction of an MRT is analogue to
their impurity decrease sums relative to that of the most .
. : a CART, and most of the parameters defined are the same.
important predictof10,11,22] . .
However, changes are made to the impurity measure and the
M, labelling of the nodes, given the fact that several responses
ma{M,; v=1,...,n] are used[11]. Comparable to CART, a repeated binary
v splitting procedure is used in MRT to divide the objects into
with imp, the importance of variable, M, the impurity groups (leaves) of analogue response profiles (MRT).
decrease sum caused by variableand n the number of The multivariate impurity measure for MRT is defined as
given variables. the squared Euclidean distance of objects around the node

impy =
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Fig. 1. Multivariate regression tree with nine nodes, describing 32 separate responses. For each node a bar plot represents the distriblties of tie va
responses for the objects (molecules) included.

centroid: to predict a given response using a set of predictor variables,
P which are different from the multivariate response. Since
i0=72> Onj—y)? in AAMRT the same data set is used both as multivariate
tnet joi response and as predictors, the method is unsupervised.

Moreover, AAMRTS can only be applied for exploratory data
wherei(r) is the impurity of node; p the number of response  gnalysis and not for predictions. AAMRT was successfully
variables describegt,; thejth response value of observation  appjied for revealing both clusters and the variables which are
x, belonging to node; y;(r), the meanjth response of all  most responsible for the cluster structure in a given data set
observations in node[11]. Thus, both in CART and MRT,  [18]. Since we want to extract the most orthogonal systems
a decision tree is grown in such a way that the so-called ho- for given sets of chromatographic systems based only on the

mogeneity and the impurity within each node are maximized retention data on these systems, AAMRT can be applied.
and minimized, respectively.

For MRT the mean for each response is the label repre-
sented in a bar plot, that shows the distribution of the re- 3. Experimental
sponses in a given node. The example treEiin 1 defines
nine leaves using eightsplits. Since one chromatographic sys- - The retention data studied were taken from two publica-
tem (CS 17) is selected twice to define a split of the tree, a tjons by Van Gyseghem et 45,6].
total of seven chromatographic systems is used to grow the  The first data set consists of retention data for 68
tree. Within the nine terminal leaves obtained, the molecules sirycturally diversive drugs (from different pharmacological
have analogue multivariate response values (here, retentionyoups, with different functional groupskp values and hy-
profile on the 32 systems). For each leaf the mean multivari- grophobic properties), on 32 chromatographic systems con-
ate response profile is represented by a bar plot, in which eaclisting of eight stationary phases (all silica-based): Zorbax
bar’s height is related to the mean value for each response gxtend-C18, Zorbax Bonus-RP, Waters XTerra MS C18, Wa-
The first leaf from the left, for instance, contains four objects ters XTerra RP18, YMC-Pack C4, Waters SymmetryShield
with overall very low response values, whereas in the last oneRp18, YMC-Pack Pro C18 and Waters XTerra Phenyl, com-

3 molecules with very high responses are grouped. bined with mobile phases at four different pH values (2.5, 4.8,
7.0 and 9.0). The data set contains mainly basic substances
2.3. Supervised versus unsupervised trees (55), since most drugs have basic properties, but also some

neutral (4) and acidic compounds (9) are included. The com-
Recently, Questier et dl18] proposed a specific kind of  position of the different mobile phases, run conditions, and
multivariate regression trees, called auto-associative multi- more details on the other chromatographic conditions can be
variate regression trees. These trees differ from the “regular” found in[5] for all systems.
MRT's, because the predicted (described) variables and the The second data set combines a diverse set of 12 columns
explanatory variables are the same. In general, multivariate (including a broad range of stationary phase types): Chro-
regression trees are applied for supervised applications, i.emolith Performance, Zorbax Extend-C18, ZirChrom-PS,
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Fig. 2. Relative importance sum (RIS) plot for the (a) 32 chromatographic systems of data set 1, and (b) 38 chromatographic systems of data set 2.
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Platinum C18, Platinum EPS C18, Zorbax Eclipse XDB- obtained for each of the univariate treéfy. 2a gives a bar
C8, Betasil Phenyl Hexyl, Suplex pKb-100, ZirChrom-PBD, plot of the relative importance sum values obtained for all
Aqua, PLRP-S, Luna CN. Combined with mobile phases dif- chromatographic systems, taking into account all 32 univari-
fering in pH, type of organic modifiers, column temperature ate regression trees. In this plot the chromatographic systems
and flow rate a total of 38 systems was thus obtaijtgd are ranked according to decreasing RIS value. Thus, all sys-
The retention data used consist of the normalized retentiontems are ranked by their decreasing ability to describe the
timest = (¢ — 1g)/to of the 68 substances measured on each retention of the test substances on the other chromatographic
of the chromatographic systems using gradient elution. More systems, and consequently the most orthogonal systems can
information on the chromatographic systems can be found in be derived as the systems with the lowest RIS values. The 10
[6]. most orthogonal systems (lowest RIS values) obtained from
The tree models were grown using the TreePlus add- Fig. 2a are CS 29, CS 30, CS 22, CS 21, CS 31, CS 26, CS
on module[25,26] in the S-Plus 2000 environment (Math- 25, CS 10, CS 32 and CS 27. Analogue systems were defined
soft, Cambridge, MA, USA) using the following parameters: as orthogonal by Van Gyseghem et[a].. the four most or-
squared deviations were used as impurity measure, the maxthogonal systems (CS 29, CS 30, CS 22 and CS 21) were
imal trees were build with ‘one object’ as stopping criterion, also selected in the previous study, together with CS 25, CS
and all variables were considered for each split of a given tree 10 and CS 27. Only 3 chromatographic systems (CS 26, CS
to define surrogate splits. 31 and CS 32) selected based on their RIS values, were not
selected by Van Gyseghem et al. Since none of the methods
used can be considered as the only good method to select the
4. Results and discussion most orthogonal systems, it is impossible to conclude which
of them is the best. Since overall a high agreement is found
In order to define orthogonal systems within the sets of between the orthogonal systems selected by these methods,
chromatographic systems researched, two approaches wer# is concluded that both provide useful information on the
evaluated: the first methodology uses a set of maximal uni- orthogonality.
variate regression trees, each of them build in order to de-
scribe the retention on one of the given chromatographic sys-4.7.2. Data set 2

tems (the response), using all remaining retention data as ex-  Since 38 different chromatographic systems are included
planatory variables. A total of 32 and 38 univariate regression jn the second data set, 38 maximal univariate regression trees
trees were build for the two data sets, respectively. Based onwere build. Based on the importance values obtained for the
the computation of the relative importance sumfor each ofthe trees that describe the remaining 37 chromatographic sys-
chromatographic systems a ranking of the chromatographictems, the RIS values were calculated for each of the systems.
systems can be obtained. The resulting bar plot is shown Fig. 2o. From this plot it can

The second approach is based on the construction of ape concluded that CS5,CS8,CS2,CS4,CS3,CS6,CS 22,
maximal auto-associative multivariate regression tree, usingCs 7, CS 9 and CS 15 are the 10 most orthogonal systems for
the normalized retention timeof the 68 substances on the  the second data set. Analogue results are obtained compared

chromatographic systems (32 and 38, respectively) both asto the selection of orthogonal systems from Van Gyseghem
responses and as predictors. Then, the evaluation of the rela-

tive importance of the given chromatographic systems in the
AAMRT leads to a list of the systems, ranked by their orthog- Taple 1
onality (dissimilarity) within the given set of systems. Note Comparison of the most orthogonal systems selected for data set 2: (a) us-

that the two data sets were always studied separately. ing the univariate approach; (b) based on AAMRT; (c) obtainef@Jr{not
ordered); (d) obtained if19]
4.1. Univariate regression trees Orthogonality @ (b) (©) (d)

1 CS5 CS5 CS?2 CS5

4.1.1. Data set 2 Cs8 Cs2 Cs3 Cs2

Since one univariate regression tree only provides infor- 3 csz2 CS4 cs4 css

mation on the relation between the predictor variables and the cs4 cs6 c55 cs3

pre , e g cs3 css cs6 cs6

response (here, one of the systems), it cannot provide the in- g cs6 cs 3 cs7 cs4

formation needed to select the most orthogonal systems from 7 CS 22 CS 15 Ccss Ccs7
a given set. However, based on one tree the other columns 8 Cs7 Cs7 CS9 CS22

could be classified by either their similarity or their dissim- €S9 cS22 (CS15) €S9
ilarity (orthogonality) regarding to the response column, us- oS 15 c59 €520 oS 15
larity ygonality) regarding pon M, US=q CS 36 cs1 cs22 CS 20
ing the variable importance list of all possible predictors. 15 CS 19 CS 19 CS 36
However, a combination of univariate regression trees (each13 CS 35 CS 14 CS 14

chromatographic system once as response) can provide moré4 CsS1 CS 20 Cs1

Cs14 CS13 Cs19

information by summing the individual variable importances 1°
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Fig. 3. Importance plot for (a) all predictors (32 chromatographic systems) of data set 1, (b) all predictors (38 chromatographic systems)of data set
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Fig. 4. Color map for the matrix of Pearson correlation coefficiertstween the normalized retention timesf the 32 systems of data set 1. The systems
were ranked according to (a) their RIS value calculated for the 32 univariate regression trees, (b) their importance in the AAMRT.
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et al.[6]. All systems selected here, were also selected asuseful to uncover the most important variables in complex
orthogonal based on the evaluation of the correlation coef- high-dimensional data sets. One could suggest that a chro-
ficients using dendrograms and color maps. In the paper bymatographic system selected to define a split in the tree can
Forlay-Frick etal[19], where selection is based onthe gener- be considered as a “general” chromatographic system, since
alized pairwise correlation method with the McNemar’s test it can be used to describe the retention profile of a molecule,
the same 10 systems were seleciablie ). Moreover, from which means the chromatographic retention on several sys-
their 15 most orthogonal ones, only CS 20 is not defined astems. Moreover, the most general systems (i.e. these with
orthogonal based on the RIS value. similar selectivities) will perform better to define both the
When comparingFig. 2a and b one observes that the primary splits, and the surrogate splits of the tree. As a con-
relative importance sum differences are more important in sequence, a chromatographic system that has a completely

Fig. 2b. The RIS-values of the orthogonal systemFiig. 2b different selectivity (and thus is orthogonal) will be less im-
also are considerably smaller than thodeim 2a. This can be portantto define the tree, since it does not contain information
explained from a practical point of view. In data seFig( 2a) related to the other systems. Thus, the chromatographic sys-

we are dealing with a set of relatively similar reversed-phase tems that contribute the least to the AAMRT can be defined
stationary phases evaluated at different pH values. In data ses most orthogonal to the re$tig. 3a shows a bar plot in

2 (Fig. 2o) stationary phases with very different properties are which the chromatographic systems are ranked according to
included. Therefore, one can expect that the selectivity dif- their importance in the global AAMRT. The system with the
ferences between the most diverse systems of data set 2 willargest importance is situated on the left of the plot and its bar
be larger than between those of data set 1. This is reflectecheight equals 1. The bars of the other systems (with lower im-

in the RIS plots. portance values) are sorted by decreasing importance. From
this ranking it can be concluded that the 10 most orthogonal

4.2. Auto-associative multivariate regression trees systems are the systems CS 29, CS 30, CS 10, CS 2, CS 6,
CS 22, CS 23, CS 21, CS 18 and CS 27, since they show

4.2.1. Data set 1 the lowest importances in the tree. Four of the 10 systems

A maximal auto-associative multivariate regression tree selected as orthogonal based on the AAMRT approach, were
was build to describe the retention on the 32 chromatographicnot selected using the univariate approach. However, three of
systems. In general, multivariate regression trees tend to splithem were also selected in the work of Van Gyseghem et al.
the data into groups with analogue multivariate response pro-[5]: only CS 23 was not. The differences between the selec-
files. As discussed by Questier et i8] AAMRTSs can be tions based on different approaches might be explained by

0.9

L o ! 1 Loonor o I
11 9 15141216 13 7 6 10 19 17 23 24 20 18 28 27 32 31 26 25 22 21 30 29

Ccs

Fig. 5. Color map of correlation coefficients for the 32 systems ranked according to increasing dissimilarities in the weighted-average-linkggenden
(redrawn from data set ¢5]).
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R. Put et al. / J. Chromatogr. A 1096 (2005) 187-198 197

the higher discussed relative similarity between the different can be drawn folFig. 6, which shows the color maps for

systems. data set 2. Comparing thHégs. 4 and Gagain demonstrate
the larger selectivity differences (reflected in largemalue
4.2.2. Data set 2 differences) in the latter figur€igs. 4 and 6ndicate that the

The AAMRT results in the variable importance list are ranking of the systems in the correlation coefficients matrix
shown inFig. 3b. From this plot it can be concluded that the accordingto the results of the regression trees is less appropri-
same chromatographic systems are considered to be orthogate to consider groups of systems in the data set. However, it
onal from the univariate approach based on the RIS parame-can be seen that the most orthogonal systems selected, show
ter. The following systems were thus most orthogonal for this a low correlation to most other systems (blue colors in the
dataset: CS5,CS2,CS4,CS6,CS8,CS3,CS 15,CS 7, CSight and lower part of the color maps), which confirms the
22 and CS 9. For AAMRT analogue results are obtained com- discussed selection of orthogonal systems.
pared to the univariate approach. In spite of some shifts in the
ranking, the same 10 most orthogonal systems were selected
for the second data set. In the list of the 15 most orthogonal 5. Conclusions
systemsTable ), CS 35 and CS 36 are here replaced by CS

20 and CS 13. Compared to the study by Forlay-Frick etal. Ty new ranking methods were derived for the selec-
[19] now only system 36 is not selected and is replaced by sys-tjon of the most orthogonal chromatographic systems from
tem 13 in the list of the 15 most orthogonal systems, while CS 4 given set of systems, which are based on univariate regres-
20 however, is includedable lindicates thatin generalthe  sjon trees and auto-associative multivariate regression trees,
different methods lead to an analogue selection of the MOSstrespectively. The information regarding the most orthogo-
orthogonal chromatographic systems from the 38 systems.5 systems can be extracted from the univariate regression
However, the exact sequence of orthogonality is not defined rgeg by describing the retention on a chromatographic sys-
uniformly, since the basis on which orthogonality is defined tem using the retention data on the other systems as pre-
differs for all methods. The generally accepted definition of gictors. The proposed relative importance sum parameter is
orthogonal systems states that a considerable selectivity dif-;5e(d to quantify the information gained. AAMRT creates a
ference between such systems is obsefyg¥], butthereis  gimple tree, which divides the molecules into groups within
no preferred mathematical methodology yet for the selection ywhich the objects have similar retention profiles on the dif-
of the most orthogonal systems. As a consequence, it Mayferent chromatographic systems. The most orthogonal chro-
be advisable to consider several methods simultaneously i”matographic systems can be easily derived, using the im-
order to make such a selection, instead of using only one portance plot of the different chromatographic systems for
(preferred) method. Taking this into account, the preferable thejr yse as predictors in the AAMRT. The most orthogo-
set of orthogonal systems is formed by CS 2, CS 3, CS 4, n3| systems have the lowest importance, since they have the
CS5,C56,CS7,CS8,CS 9, CS 15 and CS 22, since thesgeast in common with the other chromatographic systems and
systems are selected by each method considered. thus are the most different from them. Compared to previous
When comparing the importance plots for both data sets gygjes, similar selections were made: e.g. for the second
(Fig. 3a and b) similar conclusions can be drawn as when the ata set exactly the same 10 most orthogonal systems were

RIS plots Fig. 2a and b) were. found with both the univariate approach and AAMRT, which
were also equal to an earlier selection based on statistical
4.3. Color maps tests.

The use of color maps, as an additional visualization tech-
nique to evaluate, for instance, groups of similar systems,
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