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Abstract

In order to select chromatographic starting conditions to be optimized during further method development of the separation of a given
mixture, so-called generic orthogonal chromatographic systems could be explored in parallel. In this paper the use of univariate and multivariate
regression trees (MRT) was studied to define the most orthogonal subset from a given set of chromatographic systems. Two data sets were
c ectively. For
b trees. Since
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onsidered, which contain the retention data of 68 structurally diversive drugs on sets of 32 and 38 chromatographic systems, resp
oth the univariate and multivariate approaches no other data but the measured retention factors are needed to build the decision
ultivariate regression trees are used in an unsupervised way, they are called auto-associative multivariate regression trees (A
ll decision trees used, a variable importance list of the predictor variables can be derived. It was concluded that based on these
oth for univariate and multivariate regression trees, a selection of the most orthogonal systems from a given set of systems can

n a user-friendly and fast way.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Reversed-phase high performance liquid chromatography
RPLC) is one of the most popular separation techniques used
n the pharmaceutical industry[1]. Nowadays a wide range of
olumns containing different stationary phases are available
nd can be combined with a range of mobile phases. This
iversity opens the opportunity to use RPLC for almost any
harmaceutical separation[2,3].

However, it is often not easy to select an appropriate start-
ng point, e.g. a first choice of stationary and mobile phase,
hich is then optimized during further method development.
ost of the time such a starting point is selected using

rial-and-error methods[3]. An interesting approach is a
etup in which different chromatographic systems are tested
n parallel [4]. From these exploring experiments, the best
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initial starting conditions for a given new mixture are retai
and they are further studied to improve the separation d
further method development. In this context it would
ideal to have a set of chromatographic systems with diffe
selectivities. In order to obtain such an ideal subset of c
matographic systems attempts are made to select the m
thogonal from larger sets[5–9]. Orthogonal chromatograph
systems are defined as systems with a strongly differen
lectivity. This is caused by the fact that different mechani
of retention are present in these systems or the rete
is influenced by different charges of the given solu
[5,6].

Moreover, such an approach may be useful to revea
composition of an unknown mixture. One of the most c
mon mixtures to be separated in the pharmaceutical ind
consists of a new drug and its impurities, which initially
unknown in number and structure. Exploring the separa
on a set of parallel orthogonal systems can maximize
probability that all substances will be revealed and indi
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which system(s) are most appropriate for further method op-
timization.

The aim of this paper is to introduce and evaluate two
new methodologies based on univariate[10] and multi-
variate regression trees[11] for the selection of orthogonal
chromatographic systems. Univariate regression trees were
proposed by Breiman et al. in 1984[10] as one part of
the non-parametric statistical method called classification
and regression trees (CART). The name indicates that the
methodology can handle both categorical and numerical
variables as a univariate response[10]. CART is frequently
used for modelling in different fields such as analytical
chemistry, medical diagnosis, clinical epidemiology and
ecology [12–15], since it can handle large sets of data
(thanks to automatic feature selection), but probably more
important, since the resulting models are simple decision
trees, which are very easy to interpret. Multivariate regres-
sion trees (MRT) were introduced in 1992 by Segal to handle
longitudinal data[16]. The methodology implemented in our
study, was proposed by De’Ath[11] in the field of ecology.
Another recently published paper by Larsen and Speckman
[17] proposes an analogue method for the analysis of
abundance data in ecology. In general, MRT’s are proposed
for the simultaneous description of several responses by tree
models, using a set of independent variables to extract and
predict the clusters present in the multivariate responses.
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tering technique or weighted pair group method using arith-
metic averages (WPGMA) method, OPTICS color maps and
PCA [5,20]. Another approach suggested by Forlay-Frick
et al. [19] is based on the generalized pairwise correlation
method (GPCM)[21] for which the authors evaluated differ-
ent statistical selection criteria. In this paper we evaluate two
new methodologies for the selection of orthogonal chromato-
graphic systems based on univariate and multivariate regres-
sion trees, and their use to sort the systems in color maps.

2. Theory

2.1. Univariate regression trees

2.1.1. Classification and regression trees
In 1984, Breiman et al.[10] introduced a statistical method

for classification and modelling, called “classification and re-
gression tree (CART) analysis”. In this approach, a binary
partitioning procedure is applied in order to explain the vari-
ation of a single dependent variable (the response variable
or response) based on a set of independent variables (the
explanatory variables or predictors). CART can handle both
categorical and numerical variables as response and predic-
tors. Since CART can handle only one response variable at
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ore recently, Questier et al.[18] proposed to use MRT
n unsupervised way. Unsupervised means that no res
ariables are available in the data set, which means th
riginal variables are used not only as explanatory varia
ut also as response variables. This approach was
uto-associative multivariate regression trees (AAMRT)
as proposed as a data mining cluster analysis method[18].
In order to study the selection of orthogonal syste

everal chromatographic systems with different statio
hases, buffer pH, temperature and organic modifiers
xamined. Two data sets were studied. The first consist
et of eight silica-based systems, combined with four di
nt pH levels in order to define a total of 32 chromatogra
ystems. The second consists of 38 chromatographic sy
ncluding 12 diverse columns at different mobile phase
itions. The selected subsets of orthogonal chromatogr
ystems are compared to those obtained using other me
logies on the same data sets[5,6,19]. These selections we
ased on Pearson’s correlation coefficient color map
hich the chromatographic systems were ranked acco

o increasing dissimilarities in a weighted pair group met
sing arithmetic averages (WPGMA)-dendrogram. In the
rature, the orthogonal chromatographic systems usual
elected based on the evaluation of the Pearson’s co
ion coefficients[7,8] or parameters derived from it[9,19]. In
rder to enhance the interpretation of large correlation co
ients matrices for large sets of chromatographic system
o select the most orthogonal or the similar systems, se
isualization methods were investigated, such as de
rams from the hierarchical weighted-average-linkage
-

he time, it is a univariate method. In this paper the t
univariate regression trees” is used, in order to empha
he difference between this univariate method and the m
ariate approach (see Section2.2).

CART splits the data into mutually exclusive subgrou
alled nodes, within which the objects have similar va
or the response variable. The starting point is the roo
arent node, which contains all objects of the data set.
repeated binary splitting procedure is used to split the

n two groups, called child nodes. The process is repe
y treating each child node as a parent node. Each s
efined by a single explanatory variable and a cut point
umerical variables) or by relating one or more levels o
categorical) variable to one of the nodes. For each nod
ossible splits are evaluated, testing all predictors and
ossible threshold values or levels, and finally, the best

s retained. The best split is defined as the variable (an
ociated splitting value) that minimizes the impurity,i, of
he two child nodes. The goodness of a split is then de
s the impurity decrease between the parent node a
hildren:

i(s, tP) = iP(tP) − pLi(tL) − pRi(tR) (1)

heres is a candidate split;pL andpR are the fractions o
bservations of the parent nodetp that go into the child node

L andtR, respectively. The best splitter is the one that m
izes�i(s, tP).
Different criteria to measure the impurity of a node h

een proposed for CART[10]. For regression trees, the to
um of squares of the response values about the mean
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node is the most popular measure of impurity[10,22]:

i(t) =
∑

xn ∈ t

(yn − ȳ(t))2 (2)

wherei(t) is the impurity of nodet; yn is the response value
of observationxn belonging to nodet andȳ(t) the mean of all
observations in nodet. Absolute deviations about the node
medians is another criterion which is used to build (robust)
trees[10].

A label or class is assigned to every node of the tree. For
regression trees, this is simply the mean within the node.

The splitting procedure is continued until a stopping cri-
terion is reached, i.e. all child nodes are homogeneous, or
contain one or a user-defined number of objects. The tree
thus obtained is called the maximal tree and describes the
training data as good as possible[10]. For this tree, overfit-
ting generally is observed, which will cause poor predictive
abilities for new samples[13–15]. However, if one wants to
describe the given (training) data set as good as possible, the
maximal tree is the best choice. For prediction purposes, the
optimal tree is selected from a set of subtrees derived from
the maximal tree by means of a so-called pruning procedure.
This consists in cutting away the worst terminal branches of
the maximal tree. Usually the optimal tree is then selected us-
ing either cross-validation methods or based on an external
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In summary, for each node (t) of a tree (T) the impurity,
i(t), is computed as a measure of inhomogeneity. A given
split, which divides a parent node into two child nodes, is
evaluated based on the impurity decrease (�i) it causes. A
variable (v) is characterized with an impurity decrease sum
(Mv), caused by the best (surrogate) splits the variable (v)
defines for all splits of a given tree. In the end a variable
importance list is obtained after rescalingMv between 0 and
1, so that the most important variable obtains an importance
variable (impv) equal to 1.

2.1.2. Relative importance sum
In order to combine the information of a set of univariate

regression trees, a new parameter is needed. In other meth-
ods that combine several tree-based structures (e.g. boosting
CART [23] and random forests[24]), a variable importance
parameter is used, that is computed as a weighted sum of
the original CART[10] variable importance values for each
tree. Here, an analogue parameter, the so-called relative im-
portance sum (RIS) is calculated in order to encode for the
general importance of a given predictor variable in a collec-
tion of univariate regression trees. This set of trees consists of
a separate tree for each of the variables (considered once as
response), using the other variables as explanatory variables.
Thus, the number of univariate regression trees included in
t data
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ndependent test set[10].
Since in this study prediction for new objects was n

oal, the details on pruning and optimal model selection
ot described. More information on these steps can be f

n references[10,22].
The importance of the explanatory variables to introd

split in the tree is detected in CART by the variable ran
ethod as the impurity decrease sum (Mv) caused by a pre
ictor variablev taking into account all nodes of a given tre

v =
∑

t ∈ T

�i(s̃v, t)

ith �i(s̃v, t) the largest reduction in impurity caused
surrogate split defined by the variablev (s̃v) for a node

of the treeT. Thus, the use of each variable in surrog
plits is evaluated for all nodes of the tree. Surrogate s
re alternative splits of a given node, which may be use

he case of missing values for the variable that define
riginal split of that node in the tree. The predictor with

argest impurity decrease sum (Mv) is the most importan
nd obtains an importance-value (impv) equal to 1. All othe
ariables get a score on the importance scale by comp
heir impurity decrease sums relative to that of the m
mportant predictor[10,11,22]:

mpv = Mv

max
v

[Mv; v = 1, . . . , n]

ith impv the importance of variablev, Mv the impurity
ecrease sum caused by variablev, and n the number o
iven variables.
his set equals to the number of variables present in the
et. Using each of the variables as the response of one tre
he remaining variables as predictor variables to define
ree, the importance (imp) of each variable is computed for
hese trees. The relative importance sum is then define

ISv =
∑m

i=1impv,i

max
v

[
∑m

i=1
impv,i; v = 1, . . . , n]

ith RISv the relative importance sum of variablev, m the
umber of univariate regression trees,impv,i the importanc
f variable v in the ith tree, andn the number of give
ariables (here,n = m).

.2. Auto-associative multivariate regression trees

.2.1. Multivariate regression trees
Whereas univariate regression trees handle only

esponse, the so-called multivariate regression tree
ecision trees that describe several response variables

aneously. Note that no multivariate decision rules are
or the binary splits in the MRT, but the response of a M
s multivariate. The construction of an MRT is analogu

CART, and most of the parameters defined are the s
owever, changes are made to the impurity measure an

abelling of the nodes, given the fact that several respo
re used[11]. Comparable to CART, a repeated bin
plitting procedure is used in MRT to divide the objects
roups (leaves) of analogue response profiles (MRT).

The multivariate impurity measure for MRT is defined
he squared Euclidean distance of objects around the
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Fig. 1. Multivariate regression tree with nine nodes, describing 32 separate responses. For each node a bar plot represents the distribution of the values of the
responses for the objects (molecules) included.

centroid:

i(t) =
∑

xn ∈ t

p∑

j=1

(yn,j − ȳj(t))
2

wherei(t) is the impurity of nodet; p the number of response
variables described,yn,j thejth response value of observation
xn belonging to nodet; ȳj(t), the meanjth response of all
observations in nodet [11]. Thus, both in CART and MRT,
a decision tree is grown in such a way that the so-called ho-
mogeneity and the impurity within each node are maximized
and minimized, respectively.

For MRT the mean for each response is the label repre-
sented in a bar plot, that shows the distribution of the re-
sponses in a given node. The example tree inFig. 1 defines
nine leaves using eight splits. Since one chromatographic sys-
tem (CS 17) is selected twice to define a split of the tree, a
total of seven chromatographic systems is used to grow the
tree. Within the nine terminal leaves obtained, the molecules
have analogue multivariate response values (here, retention
profile on the 32 systems). For each leaf the mean multivari-
ate response profile is represented by a bar plot, in which each
bar’s height is related to the mean value for each response.
The first leaf from the left, for instance, contains four objects
with overall very low response values, whereas in the last one
3 molecules with very high responses are grouped.

2
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m ulti-
v ular”
M d the
e riate
r s, i.e.

to predict a given response using a set of predictor variables,
which are different from the multivariate response. Since
in AAMRT the same data set is used both as multivariate
response and as predictors, the method is unsupervised.
Moreover, AAMRTs can only be applied for exploratory data
analysis and not for predictions. AAMRT was successfully
applied for revealing both clusters and the variables which are
most responsible for the cluster structure in a given data set
[18]. Since we want to extract the most orthogonal systems
for given sets of chromatographic systems based only on the
retention data on these systems, AAMRT can be applied.

3. Experimental

The retention data studied were taken from two publica-
tions by Van Gyseghem et al.[5,6].

The first data set consists of retention data for 68
structurally diversive drugs (from different pharmacological
groups, with different functional groups, pKa values and hy-
drophobic properties), on 32 chromatographic systems con-
sisting of eight stationary phases (all silica-based): Zorbax
Extend-C18, Zorbax Bonus-RP, Waters XTerra MS C18, Wa-
ters XTerra RP18, YMC-Pack C4, Waters SymmetryShield
RP18, YMC-Pack Pro C18 and Waters XTerra Phenyl, com-
bined with mobile phases at four different pH values (2.5, 4.8,
7 ances
( some
n om-
p and
m n be
f

lumns
( hro-
m PS,
.3. Supervised versus unsupervised trees

Recently, Questier et al.[18] proposed a specific kind
ultivariate regression trees, called auto-associative m

ariate regression trees. These trees differ from the “reg
RT’s, because the predicted (described) variables an

xplanatory variables are the same. In general, multiva
egression trees are applied for supervised application
.0 and 9.0). The data set contains mainly basic subst
55), since most drugs have basic properties, but also
eutral (4) and acidic compounds (9) are included. The c
osition of the different mobile phases, run conditions,
ore details on the other chromatographic conditions ca

ound in[5] for all systems.
The second data set combines a diverse set of 12 co

including a broad range of stationary phase types): C
olith Performance, Zorbax Extend-C18, ZirChrom-
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Fig. 2. Relative importance sum (RIS) plot for the (a) 32 chromatographic systems of data set 1, and (b) 38 chromatographic systems of data set 2.
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Platinum C18, Platinum EPS C18, Zorbax Eclipse XDB-
C8, Betasil Phenyl Hexyl, Suplex pKb-100, ZirChrom-PBD,
Aqua, PLRP-S, Luna CN. Combined with mobile phases dif-
fering in pH, type of organic modifiers, column temperature
and flow rate a total of 38 systems was thus obtained[6].
The retention data used consist of the normalized retention
timesτ = (tr − t0)/t0 of the 68 substances measured on each
of the chromatographic systems using gradient elution. More
information on the chromatographic systems can be found in
[6].

The tree models were grown using the TreePlus add-
on module[25,26] in the S-Plus 2000 environment (Math-
soft, Cambridge, MA, USA) using the following parameters:
squared deviations were used as impurity measure, the max-
imal trees were build with ‘one object’ as stopping criterion,
and all variables were considered for each split of a given tree
to define surrogate splits.

4. Results and discussion

In order to define orthogonal systems within the sets of
chromatographic systems researched, two approaches were
evaluated: the first methodology uses a set of maximal uni-
variate regression trees, each of them build in order to de-
scribe the retention on one of the given chromatographic sys-
t s ex-
p sion
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f from
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obtained for each of the univariate trees.Fig. 2a gives a bar
plot of the relative importance sum values obtained for all
chromatographic systems, taking into account all 32 univari-
ate regression trees. In this plot the chromatographic systems
are ranked according to decreasing RIS value. Thus, all sys-
tems are ranked by their decreasing ability to describe the
retention of the test substances on the other chromatographic
systems, and consequently the most orthogonal systems can
be derived as the systems with the lowest RIS values. The 10
most orthogonal systems (lowest RIS values) obtained from
Fig. 2a are CS 29, CS 30, CS 22, CS 21, CS 31, CS 26, CS
25, CS 10, CS 32 and CS 27. Analogue systems were defined
as orthogonal by Van Gyseghem et al.[5]: the four most or-
thogonal systems (CS 29, CS 30, CS 22 and CS 21) were
also selected in the previous study, together with CS 25, CS
10 and CS 27. Only 3 chromatographic systems (CS 26, CS
31 and CS 32) selected based on their RIS values, were not
selected by Van Gyseghem et al. Since none of the methods
used can be considered as the only good method to select the
most orthogonal systems, it is impossible to conclude which
of them is the best. Since overall a high agreement is found
between the orthogonal systems selected by these methods,
it is concluded that both provide useful information on the
orthogonality.
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ems (the response), using all remaining retention data a
lanatory variables. A total of 32 and 38 univariate regres

rees were build for the two data sets, respectively. Base
he computation of the relative importance sum for each o
hromatographic systems a ranking of the chromatogra
ystems can be obtained.

The second approach is based on the construction
aximal auto-associative multivariate regression tree, u

he normalized retention timeτ of the 68 substances on t
hromatographic systems (32 and 38, respectively) bo
esponses and as predictors. Then, the evaluation of the
ive importance of the given chromatographic systems in
AMRT leads to a list of the systems, ranked by their orth
nality (dissimilarity) within the given set of systems. N

hat the two data sets were always studied separately.

.1. Univariate regression trees

.1.1. Data set 1
Since one univariate regression tree only provides in

ation on the relation between the predictor variables an
esponse (here, one of the systems), it cannot provide t
ormation needed to select the most orthogonal systems

given set. However, based on one tree the other col
ould be classified by either their similarity or their diss

larity (orthogonality) regarding to the response column,
ng the variable importance list of all possible predict
owever, a combination of univariate regression trees (
hromatographic system once as response) can provide
nformation by summing the individual variable importan
.1.2. Data set 2
Since 38 different chromatographic systems are incl

n the second data set, 38 maximal univariate regression
ere build. Based on the importance values obtained fo

rees that describe the remaining 37 chromatographic
ems, the RIS values were calculated for each of the sys
he resulting bar plot is shown inFig. 2b. From this plot it ca
e concluded that CS 5, CS 8, CS 2, CS 4, CS 3, CS 6, C
S 7, CS 9 and CS 15 are the 10 most orthogonal system

he second data set. Analogue results are obtained com
o the selection of orthogonal systems from Van Gyseg

able 1
omparison of the most orthogonal systems selected for data set 2:

ng the univariate approach; (b) based on AAMRT; (c) obtained in[6] (not
rdered); (d) obtained in[19]

rthogonality (a) (b) (c) (d)

1 CS 5 CS 5 CS 2 CS 5
2 CS 8 CS 2 CS 3 CS 2
3 CS 2 CS 4 CS 4 CS 8
4 CS 4 CS 6 CS 5 CS 3
5 CS 3 CS 8 CS 6 CS 6
6 CS 6 CS 3 CS 7 CS 4
7 CS 22 CS 15 CS 8 CS 7
8 CS 7 CS 7 CS 9 CS 2
9 CS 9 CS 22 (CS 15) CS 9
0 CS 15 CS 9 CS 20 CS
1 CS 36 CS 1 CS 22 CS
2 CS 19 CS 19 CS 3
3 CS 35 CS 14 CS 1
4 CS 1 CS 20 CS 1
5 CS 14 CS 13 CS 1
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Fig. 3. Importance plot for (a) all predictors (32 chromatographic systems) of data set 1, (b) all predictors (38 chromatographic systems) of data set2.
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Fig. 4. Color map for the matrix of Pearson correlation coefficientsr between the normalized retention timesτ of the 32 systems of data set 1. The systems
were ranked according to (a) their RIS value calculated for the 32 univariate regression trees, (b) their importance in the AAMRT.
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et al. [6]. All systems selected here, were also selected as
orthogonal based on the evaluation of the correlation coef-
ficients using dendrograms and color maps. In the paper by
Forlay-Frick et al.[19], where selection is based on the gener-
alized pairwise correlation method with the McNemar’s test
the same 10 systems were selected (Table 1). Moreover, from
their 15 most orthogonal ones, only CS 20 is not defined as
orthogonal based on the RIS value.

When comparingFig. 2a and b one observes that the
relative importance sum differences are more important in
Fig. 2b. The RIS-values of the orthogonal systems inFig. 2b
also are considerably smaller than those inFig. 2a. This can be
explained from a practical point of view. In data set 1 (Fig. 2a)
we are dealing with a set of relatively similar reversed-phase
stationary phases evaluated at different pH values. In data set
2 (Fig. 2b) stationary phases with very different properties are
included. Therefore, one can expect that the selectivity dif-
ferences between the most diverse systems of data set 2 will
be larger than between those of data set 1. This is reflected
in the RIS plots.

4.2. Auto-associative multivariate regression trees

4.2.1. Data set 1
A maximal auto-associative multivariate regression tree

was build to describe the retention on the 32 chromatographic
s split
t pro-
fi

useful to uncover the most important variables in complex
high-dimensional data sets. One could suggest that a chro-
matographic system selected to define a split in the tree can
be considered as a “general” chromatographic system, since
it can be used to describe the retention profile of a molecule,
which means the chromatographic retention on several sys-
tems. Moreover, the most general systems (i.e. these with
similar selectivities) will perform better to define both the
primary splits, and the surrogate splits of the tree. As a con-
sequence, a chromatographic system that has a completely
different selectivity (and thus is orthogonal) will be less im-
portant to define the tree, since it does not contain information
related to the other systems. Thus, the chromatographic sys-
tems that contribute the least to the AAMRT can be defined
as most orthogonal to the rest.Fig. 3a shows a bar plot in
which the chromatographic systems are ranked according to
their importance in the global AAMRT. The system with the
largest importance is situated on the left of the plot and its bar
height equals 1. The bars of the other systems (with lower im-
portance values) are sorted by decreasing importance. From
this ranking it can be concluded that the 10 most orthogonal
systems are the systems CS 29, CS 30, CS 10, CS 2, CS 6,
CS 22, CS 23, CS 21, CS 18 and CS 27, since they show
the lowest importances in the tree. Four of the 10 systems
selected as orthogonal based on the AAMRT approach, were
not selected using the univariate approach. However, three of
t et al.
[ elec-
t d by

F
(

ystems. In general, multivariate regression trees tend to
he data into groups with analogue multivariate response
les. As discussed by Questier et al.[18] AAMRTs can be
ig. 5. Color map of correlation coefficients for the 32 systems ranked acc
redrawn from data set of[5]).
hem were also selected in the work of Van Gyseghem
5]: only CS 23 was not. The differences between the s
ions based on different approaches might be explaine
ording to increasing dissimilarities in the weighted-average-linkage dendrogram
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Fig. 6. Color map for the matrix of Pearson correlation coefficientsr between the normalized retention timesτ of the 38 systems of data set 2. The systems
were sorted according to (a) their RIS value calculated for the 38 univariate regression trees, (b) their importance in the AAMRT.
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the higher discussed relative similarity between the different
systems.

4.2.2. Data set 2
The AAMRT results in the variable importance list are

shown inFig. 3b. From this plot it can be concluded that the
same chromatographic systems are considered to be orthog-
onal from the univariate approach based on the RIS parame-
ter. The following systems were thus most orthogonal for this
data set: CS 5, CS 2, CS 4, CS 6, CS 8, CS 3, CS 15, CS 7, CS
22 and CS 9. For AAMRT analogue results are obtained com-
pared to the univariate approach. In spite of some shifts in the
ranking, the same 10 most orthogonal systems were selected
for the second data set. In the list of the 15 most orthogonal
systems (Table 1), CS 35 and CS 36 are here replaced by CS
20 and CS 13. Compared to the study by Forlay-Frick et al.
[19] now only system 36 is not selected and is replaced by sys-
tem 13 in the list of the 15 most orthogonal systems, while CS
20 however, is included.Table 1indicates that in general the
different methods lead to an analogue selection of the most
orthogonal chromatographic systems from the 38 systems.
However, the exact sequence of orthogonality is not defined
uniformly, since the basis on which orthogonality is defined
differs for all methods. The generally accepted definition of
orthogonal systems states that a considerable selectivity dif-
ference between such systems is observed[5,27], but there is
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can be drawn forFig. 6, which shows the color maps for
data set 2. Comparing theFigs. 4 and 6again demonstrate
the larger selectivity differences (reflected in largerr-value
differences) in the latter figure.Figs. 4 and 6indicate that the
ranking of the systems in the correlation coefficients matrix
according to the results of the regression trees is less appropri-
ate to consider groups of systems in the data set. However, it
can be seen that the most orthogonal systems selected, show
a low correlation to most other systems (blue colors in the
right and lower part of the color maps), which confirms the
discussed selection of orthogonal systems.

5. Conclusions

Two new ranking methods were derived for the selec-
tion of the most orthogonal chromatographic systems from
a given set of systems, which are based on univariate regres-
sion trees and auto-associative multivariate regression trees,
respectively. The information regarding the most orthogo-
nal systems can be extracted from the univariate regression
trees by describing the retention on a chromatographic sys-
tem using the retention data on the other systems as pre-
dictors. The proposed relative importance sum parameter is
used to quantify the information gained. AAMRT creates a
s thin
w dif-
f chro-
m im-
p for
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n e the
l s and
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d were
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w stical
t

R

ons,

G.J.

A.P.
3.
ven,
117.
-

99)

N.
o preferred mathematical methodology yet for the sele
f the most orthogonal systems. As a consequence, it
e advisable to consider several methods simultaneou
rder to make such a selection, instead of using only
preferred) method. Taking this into account, the prefer
et of orthogonal systems is formed by CS 2, CS 3, C
S 5, CS 6, CS 7, CS 8, CS 9, CS 15 and CS 22, since
ystems are selected by each method considered.

When comparing the importance plots for both data
Fig. 3a and b) similar conclusions can be drawn as whe
IS plots (Fig. 2a and b) were.

.3. Color maps

The use of color maps, as an additional visualization t
ique to evaluate, for instance, groups of similar syst
as examined. Color maps were build as proposed by
yseghem et al.[5,6], representing the Pearson’s correla
oefficients (r) calculated between the normalized reten
ime τ of the substances on each pair of systems. Here
anking of the chromatographic systems however, is bas
he RIS values and importance values of the chromatogr
ystems obtained by the univariate regression trees and
ssociative multivariate regression trees, respectively.

Fig. 4shows the color maps obtained for data set 1. As
e observed, based on these color maps it is harder to d
uish between groups of similar systems than those bas
ranking according to the weighted average linkage den
rams, which were applied in[5] (Fig. 5), since the dendro
ram tends to group similar objects. Analogue conclus
-

imple tree, which divides the molecules into groups wi
hich the objects have similar retention profiles on the

erent chromatographic systems. The most orthogonal
atographic systems can be easily derived, using the
ortance plot of the different chromatographic systems

heir use as predictors in the AAMRT. The most ortho
al systems have the lowest importance, since they hav

east in common with the other chromatographic system
hus are the most different from them. Compared to prev
tudies, similar selections were made: e.g. for the se
ata set exactly the same 10 most orthogonal systems

ound with both the univariate approach and AAMRT, wh
ere also equal to an earlier selection based on stati

ests.
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